
OpenFFT Version 1.2 User Guide

Truong Vinh Truong Duy and Taisuke Ozaki

April 5, 2015

Contents

1 Introduction . 1
2 Features . 2
3 Download . 2
4 Installation . 3
5 Directory Structure . 4
6 Sample Programs . 5
7 Domain Decomposition . 7
8 Tuning of Communication . 7
9 Calling OpenFFT from a C User Program 8
10 Calling OpenFFT from a Fortran User Program 12
11 Hybrid MPI/OpenMP Execution 15
12 Complex-to-complex and Real-to-complex Transforms of 3-D

FFTs . 16

1 Introduction

OpenFFT is an open source parallel package for computing multi-dimensional
Fast Fourier Transforms (3-D and 4-D FFTs) of both real and complex
numbers of arbitrary input size. It originates from OpenMX (Open source
package for Material eXplorer, http://www.openmx-square.org/). OpenFFT
adopts a communication-optimal domain decomposition method that is adap-
tive and capable of localizing data when transposing from one dimension to
another for reducing the total volume of communication [1, 2]. It is written
in C and MPI, with support for Fortran through the Fortran interface, and
employs FFTW3 for computing 1-D FFTs.

OpenFFT is developed by Truong Vinh Truong Duy and Taisuke Ozaki
at the University of Tokyo.

1

2 Features

• Domain decomposition method: OpenFFT adopts a decomposition
method that is capable of localizing data when transposing from one
dimension to another for reducing the total volume of communication.
Also, the decomposition is adaptive, and can automatically switch be-
tween 1-D, 2-D, and 3-D (for 4-D FFTs) depending on the number of
processes and data size. Please refer to the publications for detail.

• Support for fast parallel complex-to-complex and real-to-complex trans-
forms of 3-D FFTs and 4-D FFTs with arbitrary input size.

• Tuning of communication with an auto-tuning feature.

• Support for hybrid MPI/OpenMP execution.

• Portable, tested on various general-purpose Linux clusters and pop-
ular supercomputers, including Cray XC30, SGI Altix UV1000, SGI
InfiniBand cluster, FX10, and the K computer.

• Written in C and MPI, with support for Fortran through the Fortran
interface.

• Open source package, released under the GNU General Public License
(GPL).

3 Download

OpenFFT version 1.2 is the latest vesion of OpenFFT, and is downloadable
from http://www.openmx-square.org/openfft/.

RELEASE NOTES

• OpenFFT version 1.2 (March 31, 2015)

– Download: http://www.openmx-square.org/openfft/openfft1.2.tar.gz.
Manual: http://www.openmx-square.org/openfft/manual1.2.html.

– Addition of parallel 4-D FFTs with openfft init c2c 4d() and openfft exec c2c 4d()
for initialization and execution, respectively.

– Addition of hybrid MPI/OpenMP execution.

• OpenFFT version 1.1 (November 11, 2014)

2

– Download: http://www.openmx-square.org/openfft/openfft1.1.tar.gz.
Manual: http://www.openmx-square.org/openfft/manual1.1.html.

– The c2c interface is changed from openfft initialize() and openfft execute()
to openfft init c2c 3d() and openfft exec c2c 3d() for initialization
and execution, respectively.

– Addition of the r2c interface comprised of openfft init r2c 3d()
and openfft exec r2c 3d().

– Addition of the tuning of communication to the c2c and r2c inter-
faces.

• OpenFFT version 1.0 (August 23, 2013)

– Download: http://www.openmx-square.org/openfft/openfft1.0.tar.gz.
Manual: http://www.openmx-square.org/openfft/manual1.0.html.

4 Installation

Requirements: OpenFFT requires FFTW3 (or FFTW3 wrappers such as
those provided by the Intel MKL library), a C compiler, and an MPI library.
Fortran users will also need a Fortran compiler to compile the Fortran sample
programs.

1. Step 1: Download and install FFTW3. Assume that FFTW3 is in-
stalled in /opt/fftw3. Those who already have the Intel MKL library
or FFTW3 wrappers installed can skip this step.

2. Step 2: Download and extract the OpenFFT tarball. Assume that
OpenFFT is extracted to /opt/openfft1.2.

3. Step 3: Modify CC (the C compiler) and LIB (the library path to
FFTW3) in makefile in the root folder of OpenFFT to reflect your
environment. Fortran users also need to specify FC (the Fortran com-
piler) to compile the sample programs. Samples of CC (and FC) and
LIB in several environments are given in makefile.

CC = mpicc -O3 -openmp -I/opt/fftw3/include -I./include

LIB = -L/opt/fftw3/lib -lfftw3

FC = mpif90 -O3 -openmp -I/opt/fftw3/include -I./include

4. Step 4: Issue the make command to compile and install the OpenFFT
library. The library will be made available at /opt/openfft1.2/lib/libopenfft.a
if successful.

3

5. Step 5: Link the OpenFFT library to compile a user program.

mpicc -O3 -openmp -o userprogram userprogram.c -I/opt/fftw3/include

-I/opt/openfft1.1/include -L/opt/fftw3/lib -lfftw3

-L/opt/openfft1.1/lib -lopenfft

mpif90 -O3 -openmp -o userprogram userprogram.f90 -I/opt/fftw3/include

-I/opt/openfft1.1/include -L/opt/fftw3/lib -lfftw3

-L/opt/openfft1.1/lib -lopenfft

5 Directory Structure

Directory structure of OpenFFT1.2 is as follows:

• toplevel: this is where makefile is located, as well as README.

• source: core source files of the package.

– openfft init c2c 3d.c: initialization of complex-to-complex 3-D trans-
forms.

– openfft init r2c 3d.c: initialization of real-to-complex 3-D trans-
forms.

– openfft init c2c 4d.c: initialization of complex-to-complex 4-D trans-
forms.

– openfft exec c2c 3d.c: execution of complex-to-complex 3-D trans-
forms.

– openfft exec r2c 3d.c: execution of real-to-complex 3-D transforms.

– openfft exec c2c 4d.c: execution of complex-to-complex 4-D trans-
forms.

– openfft finalize.c: finalization of transforms.

– openfft dtime.c: built-in time measurement.

• include: C and Fortran header files.

• lib: the library file is installed here if successful.

• samples: sample programs for illustrating how to use OpenFFT.

– C: C sample programs.

– FORTRAN: Fortran sample programs.

• doc: documents on the website of OpenFFT.

4

6 Sample Programs

• C sample programs:

– check c2c 3d.c: This program illustrates how to use the c2c 3-D
interface. It can be executed with an arbitrary number of pro-
cesses. Its input and output should match the corresponding val-
ues in check c2c 3d.dat. This program does not require any input
parameter.

– check r2c 3d.c: This program illustrates how to use the r2c 3-D
interface. It can be executed with an arbitrary number of pro-
cesses. Its input and output should match the corresponding val-
ues in check r2c 3d.dat. This program does not require any input
parameter.

– check c2c 4d.c: This program illustrates how to use the c2c 4-D
interface. It can be executed with an arbitrary number of pro-
cesses. Its input and output should match the corresponding val-
ues in check c2c 4d.din and check c2c 4d.dout. This program does
not require any input parameter.

– timing c2c 3d.c: This program is used for benchmarking perfor-
mance of the c2c 3-D interface with timing and GFLOPS results.
It can be executed with an arbitrary number of processes. Time
is measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

– timing r2c 3d.c: This program is used for benchmarking perfor-
mance of the r2c 3-D interface with timing and GFLOPS results.
It can be executed with an arbitrary number of processes. Time
is measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

– timing c2c 4d.c: This program is used for benchmarking perfor-
mance of the c2c 4-D interface with timing and GFLOPS results.
It can be executed with an arbitrary number of processes. Time
is measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 4 dimensions. If no input
parameter is provided, it will be executed with a default size of
324 data points.

5

– breaktime c2c 3d.c: This program is used for benchmarking per-
formance of the c2c 3-D interface with timing result broken down
into several parts and GFLOPS. It can be executed with an ar-
bitrary number of processes. Time is measured by the built-in
time measurement function. A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no in-
put parameter is provided, it will be executed with a default size
of 1283 data points. Please note that the timing breakdown can
only be correctly done with the communication pattern number
6, as other patterns may feature communication and computation
overlap.

– breaktime r2c 3d.c: This program is used for benchmarking per-
formance of the r2c 3-D interface with timing result broken down
into several parts and GFLOPS. It can be executed with an ar-
bitrary number of processes. Time is measured by the built-in
time measurement function. A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no in-
put parameter is provided, it will be executed with a default size
of 1283 data points. Please note that the timing breakdown can
only be correctly done with the communication pattern number
6, as other patterns may feature communication and computation
overlap.

– breaktime c2c 4d.c: This program is used for benchmarking per-
formance of the c2c 4-D interface with timing result broken down
into several parts and GFLOPS. It can be executed with an ar-
bitrary number of processes. Time is measured by the built-in
time measurement function. A numeric input parameter can be
provided for specifying the size of the 4 dimensions. If no input
parameter is provided, it will be executed with a default size of 324

data points. Please note that the timing breakdown can only be
correctly done with the communication pattern number 6, as other
patterns may feature communication and computation overlap.

• Fortran sample programs:

– check c2c 3d.f90: This program illustrates how to use the c2c 3-D
interface. It can be executed with an arbitrary number of pro-
cesses. Its input and output should match the corresponding val-
ues in check c2c 3d.dat. This program does not require any input
parameter.

6

– check r2c 3d.f90: This program illustrates how to use the r2c 3-D
interface. It can be executed with an arbitrary number of pro-
cesses. Its input and output should match the corresponding val-
ues in check r2c 3d.dat. This program does not require any input
parameter.

– timing c2c 3d.f90: This program is used for benchmarking perfor-
mance of the c2c 3-D interface with timing and GFLOPS results.
It can be executed with an arbitrary number of processes. Time
is measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

– timing r2c 3d.f90: This program is used for benchmarking perfor-
mance of the r2c 3-D interface with timing and GFLOPS results.
It can be executed with an arbitrary number of processes. Time
is measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

7 Domain Decomposition

OpenFFT adopts a decomposition method that is capable of localizing data
when transposing from one dimension to another to reduce the total volume
of communication. Also, the decomposition is adaptive, and automatically
switches between 1-D, 2-D, and 3-D (for 4-D FFTs) depending on the number
of processes and data size. For example, with 3-D FFTs, OpenFFT decom-
poses in the order of abc, cab, and cba for performing the 1-D FFTs along
the c-, b-, and a-axes, respectively (Fig. 1). Please refer to [1] for detail.
Other publications [2, 3, 4, 5, 6, 7] may also be useful.

8 Tuning of Communication

OpenFFT implements a number of communication patterns that can be se-
lected manually by users or automatically by the auto-tuning feature when
initializing with openfft init c2c 3d(), openfft init r2c 3d(), or openfft init c2c 4d()
. The communication patterns available are:

• 0: auto-tuning of communication, where OpenFFT automatically per-

7

Figure 1: Domain decomposition.

forms tests with all of the following patterns and picks the best per-
former in run time (recommended for high performance).

• 1: MPI Alltoallv.

• 2: MPI Isend and MPI Irecv within sub-groups of 256 processes.

• 3: MPI Isend and MPI Irecv with communication-computation over-
lap.

• 4: MPI Isend and MPI Irecv within sub-groups of 256 processes with
communication-computation overlap.

• 5: MPI Sendrecv.

• 6: MPI Isend and MPI Irecv.

• Others: default communication, which is 3.

9 Calling OpenFFT from a C User Program

Please refer to the C sample programs which illustrate how to call OpenFFT
from a C user program. Basically, it involves several steps as follows.

1. Step 1: Include the OpenFFT header file, openfft.h, in the program.

#include <openfft.h>

8

2. Step 2: Initialize OpenFFT by calling openfft init c2c 3d() for the
c2c 3-D interface, openfft init r2c 3d() for the r2c 3-D interface, or
openfft init c2c 4d() for the c2c 4-D interface.

openfft_init_c2c_3d(N1,N2,N3,

&My_Max_NumGrid,&My_NumGrid_In,My_Index_In,

&My_NumGrid_Out,My_Index_Out,

offt_measure,measure_time,print_memory);

OR

openfft_init_r2c_3d(N1,N2,N3,

&My_Max_NumGrid,&My_NumGrid_In,My_Index_In,

&My_NumGrid_Out,My_Index_Out,

offt_measure,measure_time,print_memory);

OR

openfft_init_c2c_4d(N1,N2,N3,N4,

&My_Max_NumGrid,&My_NumGrid_In,My_Index_In,

&My_NumGrid_Out,My_Index_Out,

offt_measure,measure_time,print_memory);

• Input:

– 3 dimensions of data: N1, N2, N3 for 3-D FFTs, or 4 dimen-
sions of data: N1, N2, N3, N4 for 4-D FFTs.

– offt measure for the tuning of communication (see Tuning of
Communication, default 0).

– measure time for the built-in time measurement function and
print memory for printing memory usage (0: disabled (de-
fault), 1: enabled).

• Output: arrays allocated and variables initialized.

– My Max NumGrid: the maximum number of grid points al-
located to a process, used for allocating local arrays.

– My NumGrid In: the number of grid points allocated to a
process upon starting.

9

– My Index In: the 6 or 8 indexes of grid points allocated to a
process upon starting for 3-D and 4-D FFTs, respectively.

– My NumGrid Out: the number of grid points allocated to a
process upon finishing.

– My Index Out: the 6 or 8 indexes of grid points allocated to
a process upon finishing for 3-D and 4-D FFTs, respectively.

3. Step 3: After openfft init c2c 3d(), openfft init r2c 3d(), or openfft init c2c 4d()
is called, important variables are initialized, and can be used for allo-
cating and initializing local input and output data arrays.

Allocate the local input and output data arrays based on My Max NumGrid,
which is the maximum number of grid points allocated to a process dur-
ing the transformation.

input = (dcomplex*)malloc(sizeof(dcomplex)*My_Max_NumGrid);

output = (dcomplex*)malloc(sizeof(dcomplex)*My_Max_NumGrid);

OR

input = (double*)malloc(sizeof(double)*My_Max_NumGrid);

output = (dcomplex*)malloc(sizeof(dcomplex)*My_Max_NumGrid);

Initialize the local input array from the global input array. A process is
allocated (My NumGrid In) grid points continuously from AasBbsCcs
to AaeBbeCce of the 3-D global array for 3-D FFTs, where:

as = My_Index_In[0];

bs = My_Index_In[1];

cs = My_Index_In[2];

ae = My_Index_In[3];

be = My_Index_In[4];

ce = My_Index_In[5];

For 4-D FFTs, a process is allocated (My NumGrid In) grid points
continuously from AasBbsCcsDds to AaeBbeCceDde of the 4-D global
array, where:

10

as = My_Index_In[0];

bs = My_Index_In[1];

cs = My_Index_In[2];

ds = My_Index_In[3];

ae = My_Index_In[4];

be = My_Index_In[5];

ce = My_Index_In[6];

de = My_Index_In[7];

4. Step 4: Call openfft exec c2c 3d(), openfft exec r2c 3d(), or openfft exec c2c 4d()
to transform input to output.

openfft_exec_c2c_3d(input, output);

OR

openfft_exec_r2c_3d(input, output);

OR

openfft_exec_c2c_4d(input, output);

5. Step 5: Obtain the result stored in the local output array. Upon exit-
ing, a process is allocated (My NumGrid Out) grid points continuously
from CcsBbsAas to CceBbeAae of the 3-D global array for 3-D FFTs,
where:

cs = My_Index_Out[0];

bs = My_Index_Out[1];

as = My_Index_Out[2];

ce = My_Index_Out[3];

be = My_Index_Out[4];

ae = My_Index_Out[5];

For 4-D FFTs, a process is allocated (My NumGrid Out) grid points
continuously from DdsCcsBbsAas to DdeCceBbeAae of the 4-D global
array, where:

11

ds = My_Index_Out[0];

cs = My_Index_Out[1];

bs = My_Index_Out[2];

as = My_Index_Out[3];

de = My_Index_Out[4];

ce = My_Index_Out[5];

be = My_Index_Out[6];

ae = My_Index_Out[7];

6. Step 6: Finalize the calculation by calling openfft finalize().

openfft_finalize();

10 Calling OpenFFT from a Fortran User Pro-

gram

Please refer to the Fortran sample programs which illustrate how to call
OpenFFT from a Fortran user program. Basically, it is similar to calling
from C, except for the indexes that must be incremented by 1.

1. Step 1: Include the Fortran interface and the standard iso c binding
module for defining the equivalents of C types (integer(C INT) for
int, real(C DOUBLE) for double, complex(C DOUBLE COMPLEX)
for dcomplex, etc.).

use, intrinsic :: iso_c_binding

include ’openfft.fi’

2. Step 2: Initialize OpenFFT by calling openfft init c2c 3d() for the
c2c 3-D interface, openfft init r2c 3d() for the r2c 3-D interface, or
openfft init c2c 4d() for the c2c 4-D interface .

openfft_init_c2c_3d(%VAL(N1),%VAL(N2),%VAL(N3),&

My_Max_NumGrid,My_NumGrid_In,My_Index_In,&

My_NumGrid_Out,My_Index_Out,&

%VAL(offt_measure),%VAL(measure_time),%VAL(print_memory))

OR

12

openfft_init_r2c_3d(%VAL(N1),%VAL(N2),%VAL(N3),&

My_Max_NumGrid,My_NumGrid_In,My_Index_In,&

My_NumGrid_Out,My_Index_Out,&

%VAL(offt_measure),%VAL(measure_time),%VAL(print_memory))

OR

openfft_init_c2c_4d(%VAL(N1),%VAL(N2),%VAL(N3),%VAL(N4),&

My_Max_NumGrid,My_NumGrid_In,My_Index_In,&

My_NumGrid_Out,My_Index_Out,&

%VAL(offt_measure),%VAL(measure_time),%VAL(print_memory))

• Input:

– 3 dimensions of data: N1, N2, N3 for 3-D FFTs, or 4 dimen-
sions of data: N1, N2, N3, N4 for 4-D FFTs.

– offt measure for the tuning of communication (see Tuning of
Communication, default 0).

– measure time for the built-in time measurement function and
print memory for printing memory usage (0: disabled (de-
fault), 1: enabled).

• Output: arrays allocated and variables initialized.

– My Max NumGrid: the maximum number of grid points al-
located to a process, used for allocating local arrays.

– My NumGrid In: the number of grid points allocated to a
process upon starting.

– My Index In: the 6 or 8 indexes of grid points allocated to a
process upon starting for 3-D and 4-D FFTs, respectively.

– My NumGrid Out: the number of grid points allocated to a
process upon finishing.

– My Index Out: the 6 or 8 indexes of grid points allocated to
a process upon finishing for 3-D and 4-D FFTs, respectively.

3. Step 3: After openfft init c2c 3d(), openfft init r2c 3d(), or openfft init c2c 4d()
is called, important variables are initialized, and can be used for allo-
cating and initializing local input and output data arrays.

Allocate the local input and output data arrays based on My Max NumGrid,
which is the maximum number of grid points allocated to a process dur-
ing the transformation.

13

allocate(input(My_Max_NumGrid))

allocate(output(My_Max_NumGrid))

Initialize the local input array from the global input array. A process is
allocated (My NumGrid In) grid points continuously from AasBbsCcs
to AaeBbeCce of the 3-D global array for 3-D FFTs, where:

as = My_Index_In(1) + 1

bs = My_Index_In(2) + 1

cs = My_Index_In(3) + 1

ae = My_Index_In(4) + 1

be = My_Index_In(5) + 1

ce = My_Index_In(6) + 1

For 4-D FFts, a process is allocated (My NumGrid In) grid points con-
tinuously from AasBbsCcsDds to AaeBbeCceDde of the 4-D global
array, where:

as = My_Index_In(1) + 1

bs = My_Index_In(2) + 1

cs = My_Index_In(3) + 1

ds = My_Index_In(4) + 1

ae = My_Index_In(5) + 1

be = My_Index_In(6) + 1

ce = My_Index_In(7) + 1

de = My_Index_In(8) + 1

4. Step 4: Call openfft exec c2c 3d(), openfft exec r2c 3d(), or openfft exec c2c 4d()
to transform input to output.

openfft_exec_c2c_3d(input, output);

OR

openfft_exec_r2c_3d(input, output);

OR

openfft_exec_c2c_4d(input, output);

14

5. Step 5: Obtain the result stored in the local output array. Upon exit-
ing, a process is allocated (My NumGrid Out) grid points continuously
from CcsBbsAas to CceBbeAae of the 3-D global array for 3-D FFTs,
where:

cs = My_Index_Out(1) + 1

bs = My_Index_Out(2) + 1

as = My_Index_Out(3) + 1

ce = My_Index_Out(4) + 1

be = My_Index_Out(5) + 1

ae = My_Index_Out(6) + 1

For 4-D FFTs, a process is allocated (My NumGrid Out) grid points
continuously from DdsCcsBbsAas to DdeCceBbeAae of the 4-D global
array, where:

ds = My_Index_Out(1) + 1

cs = My_Index_Out(2) + 1

bs = My_Index_Out(3) + 1

as = My_Index_Out(4) + 1

de = My_Index_Out(5) + 1

ce = My_Index_Out(6) + 1

be = My_Index_Out(7) + 1

ae = My_Index_Out(8) + 1

6. Step 6: Finalize the calculation by calling openfft finalize().

openfft_finalize();

11 Hybrid MPI/OpenMP Execution

OpenFFT has a native support for hybrid MPI/OpenMP execution. This
means users only need to set the maximum number of threads in the parallel
region as follows.

set OMP_NUM_THREADS=16

15

12 Complex-to-complex and Real-to-complex

Transforms of 3-D FFTs

While the sizes of the input and output arrays of the c2c transform stay
unchanged, i.e., a complex input array of size N1xN2xN3 will have a corre-
sponding complex output array of the same size N1xN2xN3, the size of the
complex output array is only about half of that of the real input array of
the r2c transform, i.e., a real input array of size N1xN2xN3 will have a cor-
responding complex output array of the size N1xN2x(N3/2+1). This means
both computational cost and memory usage of an r2c transform are only
about half those of a c2c one. Please refer to the C and Fortran examples
for illustration of input and output data manipulation.

Acknowledgements

This package has its origins in OpenMX (Open source package for Material
eXplorer), and has been funded by CMSI (Computational Materials Science
Initiative) of the HPCI Strategic Program (SPIRE) of the Ministry of Educa-
tion, Culture, Sports, Science and Technology of Japan. We are thankful to
Japan Advanced Institute of Science and Technology (JAIST) for the compu-
tational resources. We also thank Prof. Katsumi Hagita of National Defense
Academy of Japan for helpful discussions and contribution to the r2c 3-D
interface.

Feedback

Please feel free to drop us a line at duytvt@issp.u-tokyo.ac.jp (Truong Vinh
Truong Duy) or t-ozaki@issp.u-tokyo.ac.jp (Taisuke Ozaki) for questions,
comments, suggestions, and bug reports.

16

Bibliography

[1] T.V.T. Duy and T. Ozaki, ”A decomposition method with minimum
communication amount for parallelization of multi-dimensional FFTs”,
Computer Physics Communications, Vol. 185, Issue 1, pp. 153-164, 2014.

[2] T.V.T. Duy and T. Ozaki, ”A three-dimensional domain decomposition
method for large-scale DFT electronic structure calculations”, Computer
Physics Communications, Vol. 185, Issue 3, pp. 777-789, 2014.

[3] T.V.T. Duy and T. Ozaki, ”OpenFFT: An Open-Source Package for 3-
D FFTs with Minimal Volume of Communication”, 29th International
Supercomputing Conference (ISC’14), pp. 517-518, 2014 (Best Research
Poster Award).

[4] T.V.T. Duy and T. Ozaki, ”A decomposition method with minimal
communication volume for parallelization of multi-dimensional FFTs”,
27th International ACM Conference on Supercomputing (ICS2013), pp.
467-468, 2013.

[5] T.V.T. Duy and T. Ozaki, ”A massively parallel domain decomposi-
tion method for large-scale DFT electronic structure calculations”, 27th
International ACM Conference on Supercomputing (ICS2013), pp. 469-
470, 2013.

[6] T.V.T. Duy and T. Ozaki, ”Performance Tuning of an Open-Source
Parallel 3-D FFT Package OpenFFT”, arXiv:1501.07350, 2015.

[7] T.V.T. Duy and T. Ozaki, ”Hybrid and 4-D FFT Implementations of
an Open-Source Parallel FFT Package OpenFFT”, 2015.

17

